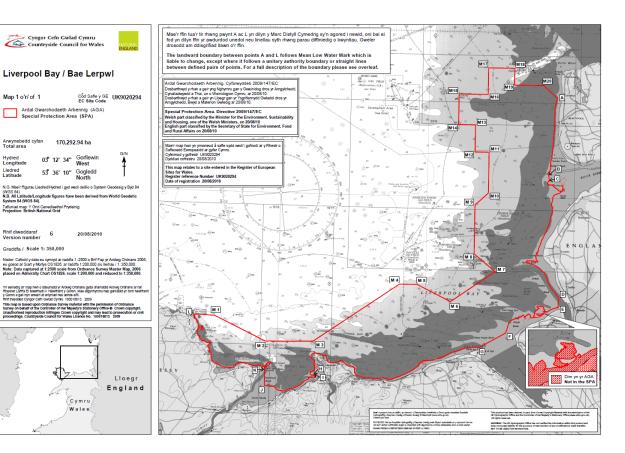
Loon & Divers Workshop TVÄRMINNE

September 2013

An approach for monitoring red-throated diver numbers in the Liverpool Bay Special Protection Area


Andy Webb & Gareth Bradbury

Liverpool Bay SPA

Classified December 2010, EU Birds Directive

1702 km² in area

922 red-throateddivers (5.4% GB)54,675 common scoter55,597 birdassemblage

Classified at same time as Outer Thames SPA (6466 – 38% GB)

AERIAL SURVEYING LIMITED

Monitoring requirements

- SPAs require management if they are to be more than lines on maps
- Definitions within conservation objectives for SPA assessing condition of site
- Natura 2000 site condition reported on every 6 years

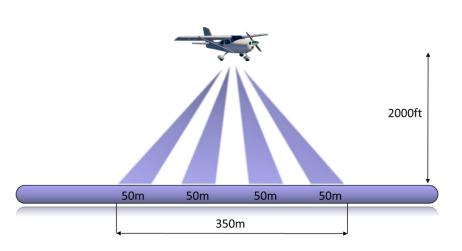
Attribute	Measure	Target
Population size (Mandatory attribute)	Estimated population size derived from standardised site condition and monitoring programme	Maintain or enhance populations on the site subject to natural fluctuations. There should be no permanent decline, only non-significant fluctuation around the mean to account for natural change.
Habitat extent (Mandatory attribute)	Area of supporting habitat	No significant decrease in the extent of supporting habitat available for red- throated diver.

Conservation objectives

- What type of information can be delivered during monitoring surveys?
- What is the power of these surveys to detect change?
- Is there a smarter way to set conservation objectives?

Using new technologies

- New digital aerial survey techniques emerged in 2008 in UK
- Potential for more precise estimates of abundance
- Less disturbance of sensitive species
- Need to over-fly large structures at sea


Survey design

- Two complete surveys
- February and March 2011
- Transects spaced 3km and 1km apart
- Each transect sampled
 175m strip

HiDef survey technique

- Sample in comb pattern
- 3 cameras sample at 2cm GSD (50m)
- 1 camera sampled at 1cm GSD (25m)
- Audited review of footage
- Audited identification of objects

Survey effort

Date	Zone	Spacing	Length (km)	Area (km ²)	% coverage
40 Est 0044	Whole	3km	1140.8	199.6	9.8%
12-Feb-2011	Hotspots	1km	1745.6	305.5	29.5%
7-Mar-2011	Whole	3km	1109.3	194.1	9.5%
	Hotspots	1km	1708.5	299.0	28.8%
	Whole	3km	2250.0	393.8	19.4%
Both surveys	VIIOIE	JKIII	2230.0	393.0	19.470
	Hotspots	1km	3454.1	604.5	58.3%

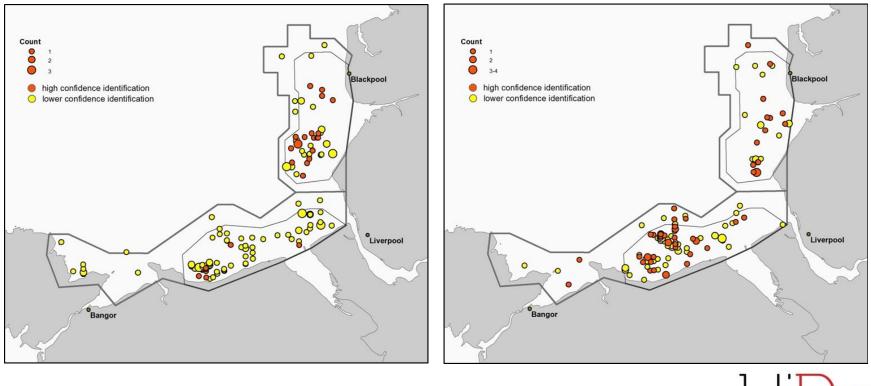
Counts

	Whole	e SPA	Hotspot		
Species	17-Feb	07-Mar	17-Feb	07-Mar	
	3km	3km	1km	1km	
Eider	0	0	16	0	
Common scoter	3467	3492	11078	6801	
Red-b merganser	0	0	7	5	
Red-throated diver	88	51	135	118	
diver sp.	155	76	266	191	
Great c grebe	9	3	139	85	
grebe sp.	9	6	139	81	
Cormorant	16	17	38	13	
cormorant/ shag	28	19	36	37	
Little gull	0	0	0	12	
small gull sp.	743	342	1548	321	
auk sp.	888	690	741	477	

Example images

Diver sp. / red-throated diver

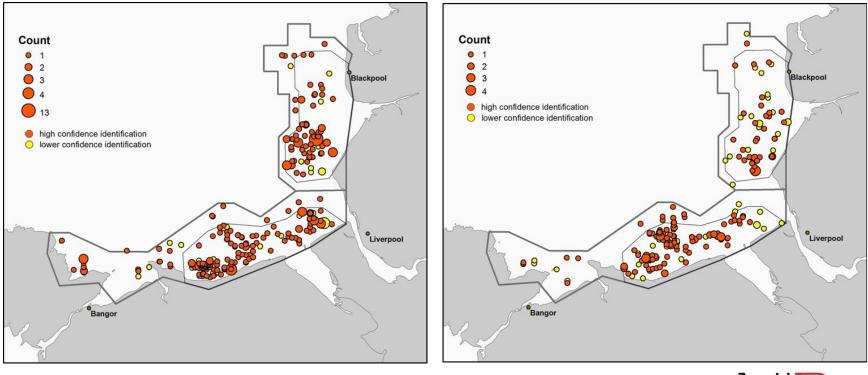
Scoter sp. / common scoter



Maps – red-throated divers

Flight 1 – 12 February 2013

Flight 2 – 7 March 2011

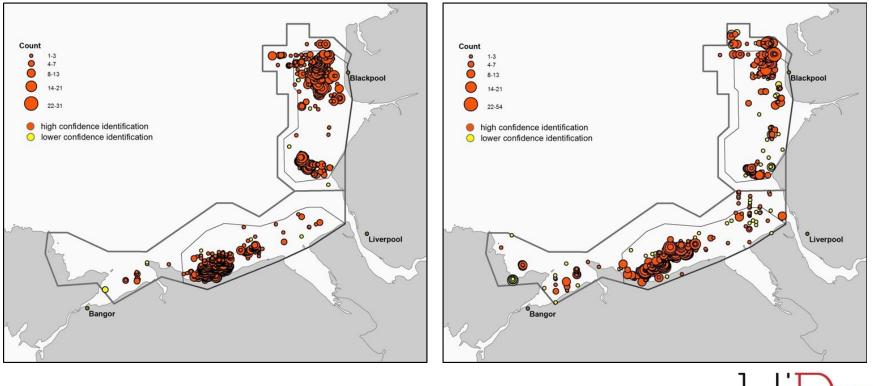


AERIAL SURVEYING LIMITED

Maps – all divers

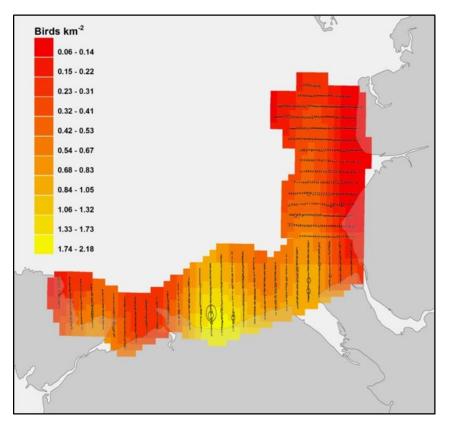
Flight 1 – 12 February 2011

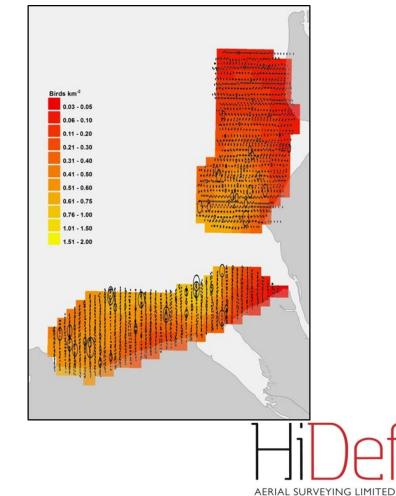
Flight 2 – 7 March 2011



Maps – common scoter

Flight 1 – 12 February 2011


Flight 2 – 7 March 2011


AERIAL SURVEYING LIMITED

Density surface maps – all divers

Whole SPA – 3km spacing

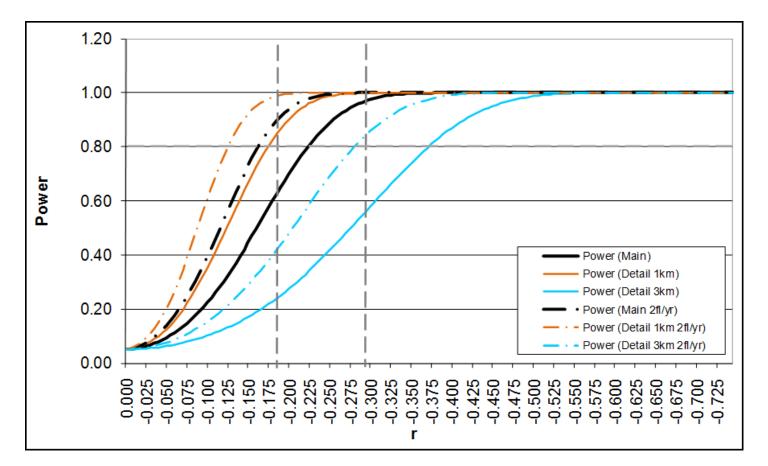
Hotspots – 1km spacing

Strip transect analysis – whole SPA

Spacing	Flight	Density (birds/km2)	Est. birds	95% CI	CV (%)
3km	12-Feb	0.718	1561	1030 - 2418	21.9
3km	07-Mar	0.295	803	521 - 1278	24.0
3km	Both	0.585	1189	910 – 1553	13.7

Strip transect analysis – hotspots

Spacing	Flight	Density (birds/km2)	Est. birds	95% Cl	CV (%)
	12-Feb	0.853	876	633 - 1255	15.9
1km	07-Mar	0.648	681	486 - 915	15.6
	Both	0.754	782	657 – 931	8.9
	12-Feb	1.146	1189	715 - 1871	29.1
3km	07-Mar	0.512	533	349 - 903	35.5
	Both	0.835	866	639 – 1173	15.6



Density surface modelling – all flights

Species	Zone	Density (birds/km2)	Est. birds	95% CI	CV (%)
	Whole SPA	17.52	35,643	26201 - 48488	15.8
Common scoter	Hotspot -1km	27.09	28,098	21097 - 37423	14.7
	Hotspot - 3km	20.00	20,496	10777 - 38981	33.7
Diver sp.	Whole SPA	0.58	1,188	920 - 1534	13.1
	Hotspot -1km	0.69	716	589 - 871	10.0
	Hotspot - 3km	0.57	593	372 - 947	24.2

Power curves

Diver sp. power curve using surveys every three years and density surface modelling to derive coefficients of variation. The dashed intersects identify a power of 0.8 to detect decreases of 50% and 33% over 10 years (assuming an exponential rate of decline), with a significance level alpha=0.05

Power analysis

Power to detect a) 50% decline over 10 years of annual surveys

	Annual surveys					Triennial surveys						
	Once per season Twice per season			Once per season Twice per sea				eason				
Species	SPA	1km	3km	SPA	1km	3km	SPA	1km	3km	SPA	1km	3km
Common scoter	Y	Y	N	Y	Y	Y	Y	Y	Ν	Y	Y	Ν
Diver species	Y	Y	Y	Y	Y	Y	Y	Y	N	Y	Y	Y

Power to detect a) 33% decline over 10 years of annual surveys

	Annual surveys					Triennial surveys						
	Once	per se	eason	Twice	per se	eason	Once	per se	eason	Twice	per se	eason
Species	SPA	1km	3km	SPA	1km	3km	SPA	1km	3km	SPA	1km	3km
Common scoter	Ν	Y	Ν	Ν	Y	Ν	Ν	Ν	Ν	Ν	Y	N
Diver species	Y	Y	Ν	Y	Y	Y	Ν	Y	Ν	Y	Y	Ν

Conclusions

- Digital aerial survey techniques work very well
- Density surface modelling gives better power to detect change (compared with strip transect analysis)

Species	% decline over 10 years	Survey spacing	Number of surveys per season	Transect spacing
Common scoter	50%	3 years	One	3km
	33%	3 years	Two	1km
Diver species	50%	3 years	One	3km
	33%	3 years	Two	3km

 Draft conservation objectives should reflect modern methods in setting targets for site condition monitoring

- Thanks to JNCC (and Natural England and Natural Resources Wales) for permission to present data
- Louise Burt (CREEM) for statistical support
- Other staff in WWT Consulting and HiDef for their work

Discussion issues

- There are biological reasons for more survey, but how often should we sample?
- Is it worth monitoring other aspects of site condition, such as human pressures at same time?
- Do we need to make the surveys and monitoring smarter?

