

Development of an Agent-based model to compare the impacts from different OWF development scenarios on Divers

Ib Krag Petersen & Chris Topping

Univ. of Aarhus

Denmark

Red-throated Diver, offshore wind farms and cumulative effects

How do we interpret the term "cumulative effects"?

- > effects from a single source of human activity
- > effects from a combination of all human activities
- For EIA work:
- How does a specific wind farm contribute to a general impact.
- For the strategic planning:

Cumulative effects must be addressed from a more general perspective.

Difference between direct and indirect effects

Main issues are

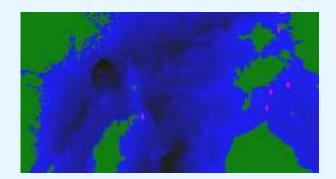
- > loss of birds as a result of collisions
- displacement of birds as a result of the presence of the turbines
- The focus of this project is the effect of displacement
- > not causing direct mortality
- > may have conditional impacts on birds

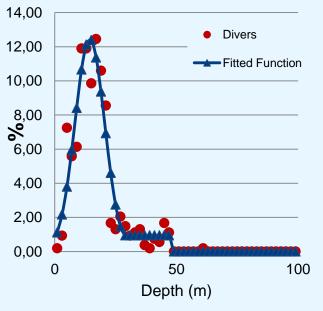
Objectives of this project

- To assess the cumulative effect on Red-throated Divers of different offshore wind farm scenarios in Denmark and the Baltic area
- The currency is "energy", but doesn't translate into "the amount of divers lost from a population"
- It simulates one year cycle, not generations of diver life cycles

The project hinges on development of an agent-based model

- Agents are individuals that take information from their local environment and use it to make decisions
- This is a simulation approach rather than an analytical one
- Our aim is to obtain the most realistic (emergent) pattern of diver space usage possible using biologically realistic mechanisms

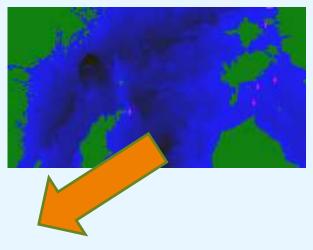




Basic diver behaviour

"Diver drivers":

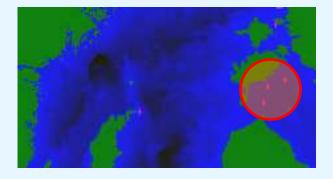
- Water Temperature
- Water Depth
- Distance to shore



Basic diver behaviour

"Diver drivers":

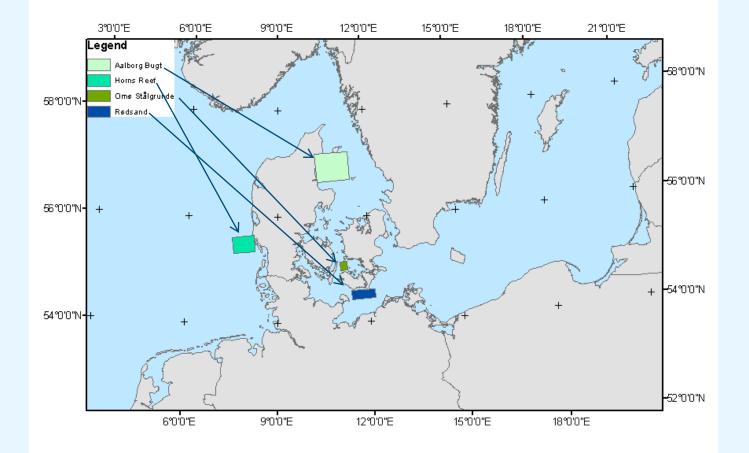
- Water Temperature
- Water Depth
- Distance to shore
- Migration urge inbuilt behaviour for migration direction



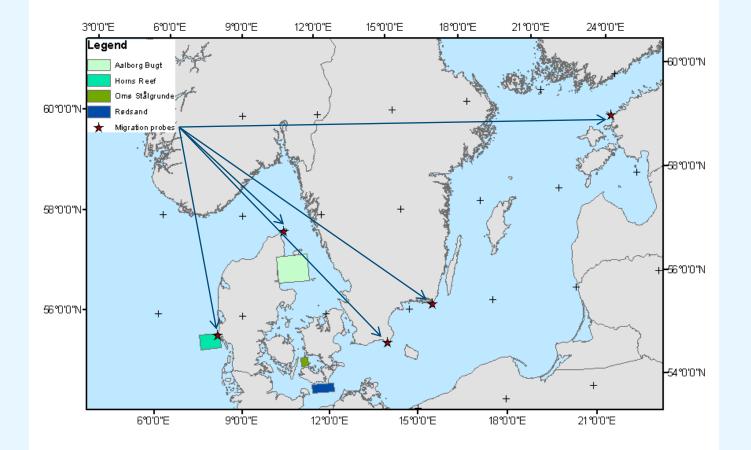
Basic diver behaviour

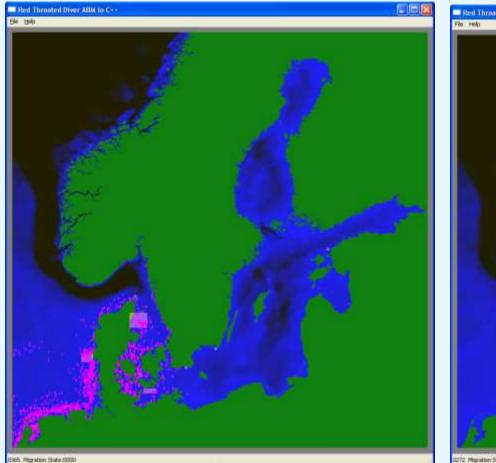
"Diver drivers":

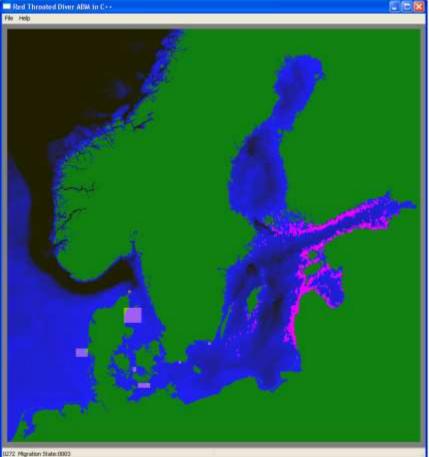
- Water Temperature
- Water Depth
- Distance to shore
- Migration urge inbuilt behaviour for migration direction
- Local density diver numbers within a 2km radius
- Energetics dispersal costs and foraging gains



Diver test data (aerial counts)




Diver test data (migration observations)



The running model

DIVER WORKSHOP 2013

Model fit compared to real world

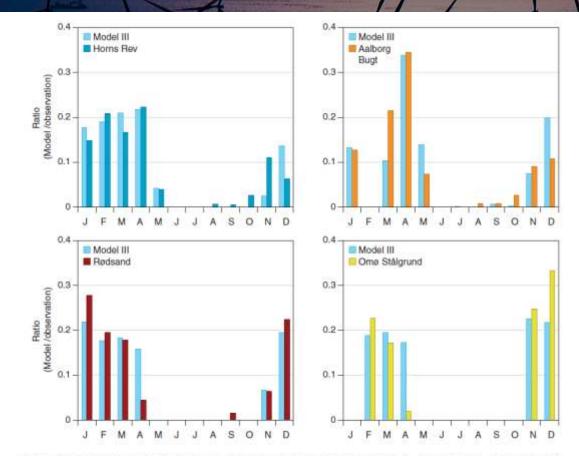


Figure 7. Version III best fit between model and observational data of stationary birds. A – Horns Rev; B – Aalborg Bugt; C – Rødsand; D – Omø Stålgrund. There are still some inconsistencies but these were not considered critical due to the innate variability of real world counts.

1

Aarhus University 2013

Scenario 1 Wind Farms

Table 2. The mean population estimates for 180 model iterations for scenario 1 (S1), scenario 2 (S2) and scenario 3 (S3) respectively, modelled for the entire model population. Standard deviation and 95% confidence intervals are given. "Difference" indicates the modelled change in population size, where negative values indicates a population decline.

	S1	S2	S3
Mean	8790.0	8782.7	8639.9
SD	159.0	134.6	132.2
N	180	180	180
95% ci	23.2	19.7	19.3
Difference	NA	-0.1%	-1.7%

1

Aarhus University 2013

 Table 2. The mean population estimates for 180 model iterations for scenario 1 (S1),

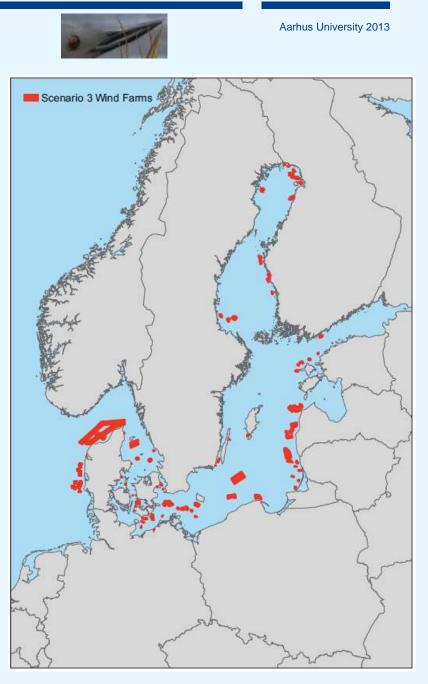
 scenario 2 (S2) and scenario 3 (S3) respectively, modelled for the entire model popula

 tion. Standard deviation and 95% confidence intervals are given. "Difference" indicates the

 modelled change in population size, where negative values indicates a population decline.

	S1	S2	S3
Mean	8790.0	8782.7	8639.9
SD	159.0	134.6	132.2
N	180	180	180
95% ci	23.2	19.7	19.3
Difference	NA	-0.1%	-1.7%

1


 Table 2. The mean population estimates for 180 model iterations for scenario 1 (S1),

 scenario 2 (S2) and scenario 3 (S3) respectively, modelled for the entire model popula

 tion. Standard deviation and 95% confidence intervals are given. "Difference" indicates the

 modelled change in population size, where negative values indicates a population decline.

	S1	S2	S3	
Mean	8790.0	8782.7	8639.9	
SD	159.0	134.6	132.2	
N	180	180	180	
95% ci	23.2	19.7	19.3	
Difference	NA	-0.1%	-1.7%	

How can this be improved?

Proposal that we develop an open-science project with the following advantages:

- Integrating breeding, disturbance and migration data
- Creating an open platform into which diver data can be placed
- Combining data from many sources to test the model
- Eventually providing an independent peer reviewed model for use in EIAs